Multi-Objective 4D Vehicle Motion Planning in Large Dynamic Environments

نویسنده

  • Paul P.-Y. Wu
چکیده

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Mission Flight Planning in Civil Unmanned Aerial Systems

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that...

متن کامل

Dynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback

Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...

متن کامل

Path Planning in Dynamic Environments with Adaptive Dimensionality

Path planning in the presence of dynamic obstacles is a challenging problem due to the added time dimension in the search space. In approaches that ignore the time dimension and treat dynamic obstacles as static, frequent re-planning is unavoidable as the obstacles move, and their solutions are generally sub-optimal and can be incomplete. To achieve both optimality and completeness, it is neces...

متن کامل

IMRT Treatment Planning on 4D Geometries for the Era of Dynamic MLC Tracking

The problem addressed here was to obtain optimal and deliverable dynamic multileaf collimator (MLC) leaf sequences from four-dimensional (4D) geometries for dynamic MLC tracking delivery. The envisaged scenario was where respiratory phase and position information of the target was available during treatment, from which the optimal treatment plan could be further adapted in real time. A tool for...

متن کامل

Multi-Sensor Perception and Dynamic Motion Planning in City Environments

In this paper we describe a state lattice based motion planning approach, which we have successfully applied to large, cluttered, but quasi-static environments. Our approach produces smooth and complex maneuvers through the use of a multi-resolution state lattice, where the resolution is adapted based on the environment, and distance from the robot. We also describe a framework for detecting dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012